
RESEARCH ARTICLE

Plasma lipidome variation during the second

half of the human lifespan is associated with

age and sex but minimally with BMI

Matthew Wai Kin Wong1, Nady BraidyID
1*, Russell Pickford2, Fatemeh Vafaee3,

John Crawford1, Julia Muenchhoff1, Peter Schofield4, John Attia4, Henry Brodaty1,5,

Perminder Sachdev1,5, Anne Poljak1,2,6

1 Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales,

Sydney, Australia, 2 Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney,

Australia, 3 Systems Biology, School of Biotechnology and Biomolecular Sciences, Faculty of Science,

University of New South Wales, Sydney, Australia, 4 School of Medicine and Public Health, University of

Newcastle, Newcastle, Australia, 5 Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital,

Sydney, Australia, 6 School of Medical Sciences, Faculty of Medicine, University of New South Wales,

Sydney, Australia

* n.braidy@unsw.edu.au

Abstract

Recent advances in mass spectrometry-based techniques have inspired research into lipi-

domics, a subfield of ‘–omics’, which aims to identify and quantify large numbers of lipids in

biological extracts. Although lipidomics is becoming increasingly popular as a screening tool

for understanding disease mechanisms, it is largely unknown how the lipidome naturally var-

ies by age and sex in healthy individuals. We aimed to identify cross-sectional associations

of the human lipidome with ‘physiological’ ageing, using plasma from 100 subjects with an

apolipoprotein E (APOE) E3/E3 genotype, and aged between 56 to 100 years. Untargeted

analysis was performed by liquid chromatography coupled-mass spectrometry (LC-MS/MS)

and data processing using LipidSearch software. Regression analyses confirmed a strong

negative association of age with the levels of various lipid, which was stronger in males than

females. Sex-related differences include higher LDL-C, HDL-C, total cholesterol, particular

sphingomyelins (SM), and docosahexaenoic acid (DHA)-containing phospholipid levels in

females. Surprisingly, we found a minimal relationship between lipid levels and body mass

index (BMI). In conclusion, our results suggest substantial age and sex-related variation in

the plasma lipidome of healthy individuals during the second half of the human lifespan. In

particular, globally low levels of blood lipids in the ‘oldest old’ subjects over 95 years could

signify a unique lipidome associated with extreme longevity.

Introduction

In recent times, mass spectrometry-based lipidomics techniques have emerged as important

technological platforms enabling the identification of hundreds to thousands of lipids in

plasma and tissue extracts [1]. Lipids play an important role in cellular metabolism by
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maintaining structural integrity, and acting as signalling molecules, and may have important

implications in health and disease. Lipidomics is commonly used to identify and quantify met-

abolic changes associated with age related disorders such as cardiovascular disease, diabetes,

metabolic syndrome [2], cancer [3], and neurological disorders, such as Alzheimer’s disease

[4–6]. It therefore forms a strong and relatively novel starting point for the study of disease

mechanisms or disease-related biomarkers. However, before investigating pathological

changes to the lipidome involved in disease states, it is important to understand how the

human lipidome naturally varies in normal healthy individuals based on anthropometric vari-

ables such as age, sex and BMI. This knowledge is not only of intrinsic interest to better under-

stand the biology of ageing, but will also aid in appropriate experimental design and subject

selection to address major research questions.

In this study, we focused on blood as an important source of biomarkers and which is already

widely used for both clinical and research purposes [6, 7]. Furthermore, venepuncture is a rela-

tively safe, minimally invasive procedure and blood is easy to collect (even for repeat analyses)

and store and therefore represents a convenient medium for investigating lipidomics [6, 8].

We applied a recently described technique [9] to extract lipids from human plasma samples.

Plasma lipid extracts were then analysed using liquid chromatography electrospray ionisation

tandem mass spectrometry (LC-ESI MS/MS) to investigate how major lipid classes were

altered as a function of age. We also wished to avoid the minor APOE allele variants ε2 and ε4,

which are frequently reported disease modulators [10, 11], and given the known APOE associ-

ation with plasma lipids, we particularly wished to eliminate this confounder. We therefore

selected exclusively APOE ε3 homozygous individuals to explore relationships between plasma

lipids and other anthropomorphic variables such as sex, BMI and cholesterol levels (HDL-C

and LDL-C). In younger age groups (aged 20 to 50 years), it has previously been reported that

plasma lipid levels are associated with age [8, 12], sex [8, 13] and BMI [14, 15]. We therefore

hypothesised that lipid profiles in normal healthy individuals will be associated with age, sex

and BMI during the second half of the human lifespan, and these relationships will be different

in the ‘oldest old’ who exemplify exceptional ageing.

Materials and methods

Subject cohorts

Our study sample comprised cognitively ‘healthy’ subjects (i.e. without dementia or MCI)

aged between 56–100 years (n = 100) enrolled in three independent population ageing studies,

which included the Sydney Memory and Ageing Study (MAS, n = 40), the Sydney Centenarian

Study (SCS, n = 20) and the Hunter Community Study (HCS, n = 40). These longitudinal stud-

ies involve collection of patient data, including results from blood chemistry, MRI, neuropsy-

chiatric assessment/cognitive tests, and medical exams performed over several waves, at an

interval of 2–3 years [16–18]. Since no single study can provide plasma samples from subjects

over the entire age range required, plasma was taken from wave 1 of the three independent

cohorts in order to capture the age range of interest and enable comparison between the youn-

gest and oldest ages. In particular, the HCS sample comprises subjects aged from 56 to 75,

residing in Newcastle, New South Wales, while the MAS sample comprises subjects aged from

75 to 90 years of age, and the SCS sample comprises exceptionally long-lived subjects aged 95

through 100 years. The study protocol for each cohort has been previously published [16–18].

The inclusion criteria included subjects enrolled in MAS, SCS or HCS, and with APOE E3/
E3 genotype. Participants who were of non-English speaking background, or who had mini

mental state examination (MMSE) scores<20, or had significant neuropsychiatric disorders,

cancer, or had cardiovascular complications were excluded from this study.
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Experimental design

To ensure adequate distributions of age, sex and BMI in the sample, as well as in joint distribu-

tions of these variables, our sample was selected as follows. From the three studies, 20 partici-

pants were selected in each age decade (55–64, 65–74, 75–84, 85–94,>94), and with

approximately equal numbers of males and females in each age group. Subjects were also

selected so that approximately half of the subjects within each age group, and also within each

sex, were in “high” and “low” BMI ranges. (These ranges were chosen so that subjects in the

low-BMI group were those with BMI in the so-called “normal” range 18–25, and those in the

high-BMI group (BMI>28) corresponding approximately to those classified as obese (defined

as BMI>29).)

Ethics approval

The SCS and MAS were approved by the Ethics Committees of the University of New South

Wales and the South Eastern Sydney and Illawarra Area Health Service (ethics approval

HC12313 and HC14327, respectively). The HCS was approved by the University of Newcastle

and Hunter New England Human Research Ethics Committees (HREC 03/12/10/3.26). All

work involving human subjects was done in accordance with the principles of the Declaration

of Helsinki of the World Medical Association. Informed consent was obtained from all partici-

pants/and or guardians.

Lipid-lowering medication

To lessen the potential effects of lipid-lowering medication on overall plasma lipids [19], we

aimed to minimise the number of the subjects on lipid-lowering medication. Nevertheless,

based on the pool of subjects available some subjects were included who were on lipid-lower-

ing medication at the time of blood extraction. In all, 26 out of 100 subjects (14 males, 12

females) were on lipid-lowering medication, and half of these subjects were aged 85 years or

older.

Plasma collection, handling and storage

Blood collection, processing and storage were performed under strict conditions to minimize

pre-analytical variability [6, 20]. Fasting EDTA plasma was separated from whole blood within

2–4 hours of venepuncture and immediately stored at -80˚C prior to bio-banking. Samples

then undergo a single freeze thaw cycle for the purpose of creating aliquots, which minimizes

subsequent freeze thaw cycles for specific experiments. EDTA plasma was chosen as anticoag-

ulant since it chelates divalent metals, thereby protecting plasma constituents from oxidation,

which is particularly important for lipids. Thereafter, lipid extractions were performed within

15 minutes of freeze thawing and extracts stored at -80˚C.

Targeted assays of plasma lipids

Plasma total cholesterol, LDL-C, HDL-C and TG were measured by enzymatic assay at SEALS

pathology (Prince of Wales Hospital) as previously described [21], using a Beckman LX20

Analyzer with a timed-endpoint method (Fullerton, CA). LDL-C was estimated using the Frie-

dewald equation (LDL-C = total cholesterol—HDL-C—triglycerides/2.2).

Internal standards

Internal standards were purchased from Avanti (Alabaster, United States). An equal volume

(100pmol/10μL) of internal standards for each lipid class was added to samples and controls
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prior to lipid extraction. Internal standard peak areas were used to normalise plasma lipid

peak areas and to correct for matrix effects and run to run variability [22]. The deuterated

internal standards used were: Cer(d18:1/12:0), SM (d18:1/12:0), d5TG(d16:0/18:0/16:0) and

d5DG(19:0/19:0). The odd-carbon chain structural analog internal standards were cholesterol

ester (CE) CE(19:0), phosphatidylcholine PC(19:0/19:0), phosphatidylethanolamine PE(17:0/

17:0), and lysophosphatidylcholine (LPC) LPC(19:0).

Lipid extraction from plasma: Single phase 1-butanol/methanol

We added 10 μL of internal lipid standards mixture (described above) to 10 μL plasma in

Eppendorf 0.5 mL tubes. 100μl of 1-butanol/methanol (1:1 v/v) containing 5 mM ammonium

formate was then added to the sample. Afterwards, samples were vortexed for 10 seconds, then

sonicated for one hour. Tubes were centrifuged at 13,000 g for 10 minutes. The supernatant

was then removed via a 200 μl gel-tipped pipette into a fresh Eppendorf tube. A further 100μl

of 1-butanol/methanol (1:1 v/v) was added to the white pellet to re- extract any remaining lip-

ids. The combined supernatant was dried by vacuum centrifugation and resuspended in 100 μl

of 1-butanol/methanol (1:1 v/v) containing 5 mM ammonium formate and transferred into

300 μl Chromacol autosampler vials containing a glass insert. Samples were stored at -80˚ C

prior to LC-MS analysis.

Liquid chromatography/ mass spectrometry

Lipid analysis was performed by LC ESI-MS/MS using a Thermo QExactive Plus Orbitrap

mass spectrometer (Bremen, Germany). A Waters ACQUITY UPLC CSHTM C18 1.7um,

2.1x100mm column was used for liquid chromatography at a flow rate of 260 μL/min, using

the following gradient condition: 32% solvent B to 100% over 25 min, a return to 32% B and

finally 32% B equilibration for 5 min prior to the next injection. Solvents A and B consisted of

acetonitrile:MilliQ water (6:4 v/v) and isopropanol:acetonitrile (9:1 v/v) respectively, both con-

taining 10 mM ammonium formate and 0.1% formic acid. Product ion scanning in positive

and negative ion modes were performed to maximise the breadth of lipid species coverage.

Sampling order was randomised prior to analysis.

Alignment and peak detection/analysis

The raw data was aligned, chromatographic peaks selected, specific lipids identified and their

peak areas integrated using Lipidsearch software v4.1 (Thermo Fischer Scientific, Waltham

MA). Data were then exported to an Excel spreadsheet for manual processing and statistical

analysis. The raw abundances (peak areas) were normalised by dividing each peak area by the

raw abundance of the corresponding internal standard for that lipid class e.g. all ceramides

were normalised using Cer(d18:1/12:0). The intra-assay coefficient of variation (CV) was cal-

culated by dividing the standard deviation of the normalised abundances by the mean across

lipid species. Lipid ion identifications were filtered using the LipidSearch parameters rej = 0

and average peak quality>0.85. Furthermore, identifications with CV<0.4 from repeated

injections of quality control plasma samples were included (see supporting methods in S1

Appendix).

Data analysis

Normalised peak areas for each lipid were exported to IBM SPSS 24.0 and R. Sums of normal-

ised abundances for each lipid class/subclass were calculated and compared across age, sex and

BMI (see S1 Table for list of lipid classes and subclasses examined). The Shapiro-Wilk test was
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performed to assess the normality of the distribution of lipid levels. If distributions were found

to be non-normal, either non-parametric statistical procedures were used, or else variables

log-10 transformed to more closely approximate the normal distribution (in the case of ordi-

nary least squares regression). Since these variables tended to violate normality (p<0.05), the

Mann-Whitney U test (non-parametric equivalent of Student’s t-test) was used to compare

lipid class abundances between pairs of groups, such as by sex, lipid lowering medication

usage, and binary BMI group, while the Kruskall-Wallis test (non-parametric equivalent of

ANOVA) was used to examine the statistical significance of relationships with categorical vari-

ables with more than two levels, particularly differences in lipid abundance by age decade.

Pearson’s product moment coefficient was used to calculate the correlations between normal-

ised abundances of lipid classes and LDL-C, HDL-C and total cholesterol. Hierarchical cluster-

ing was used to group lipid classes with similar patterns of correlations with other lipid classes.

The lipid classes were then ordered by group in the correlation matrices. The agglomeration

method used in hierarchical clustering was “complete linkage” with Euclidean distance metric.

This method identifies clusters of lipid classes that have similar correlations with other lipid

classes.

Factor analysis was applied in order to reduce multiple dependent variables (lipid classes)

into a smaller set of factors that combines the maximum common variance of these variables.

Individual lipid classes were factor analysed using principal component analysis and direct

oblimin rotation with Kaiser normalisation, yielding two factors, explaining 64.7% of the vari-

ance for the entire set of variables. The component scores were used as dependent variables for

further regression analyses. Ordinary least squares linear regression was used to examine the

effects of age, sex and BMI on normalised lipid abundances. A product term representing the

interaction between age and sex was also included in the models. Thus we modelled normal-

ised lipid abundance as a linear combination of age, sex, BMI and age by sex interaction. Age

was centred at 75 years (i.e. true age minus 75 years) to reduce collinearity between age and

the interaction between age and sex. For these analyses, those dependent variables found to be

non-normal were log10-transformed to reduce skewness and so more closely approximate the

normal distribution. In these analyses, sex was coded as male = 0 and female as 1. So, with the

interactions of age and sex included in the models, the regression coefficient of age represents

the relationship for males. We then repeated this regression analysis by recoding the sex as

male = 1 and female = 0 in order to isolate the effect of age on lipids in females only, thus pro-

viding analyses of associations between lipid abundances and age, stratified by sex. We cor-

rected levels of statistical significance for multiple testing using the Benjamini-Hochberg false

discovery method [23].

Lipid shorthand notation

For each lipid class/subclass analysed, specific lipids are named according to LIPID MAPS

convention [24], with slight modification to denote summation of lipids of a particular class/

subclass. We have applied the following shorthand notation: Cer(d18:1/X) refers to the sum of

all Cer with an 18:1 fatty acid in the sn-1 position, while CE(18:X) refers to the sum of all CE

with an 18 carbon chain length.

Results

Participant demographics

A summary of the demographics and lipid profile of the five age decades used in this study is

shown in Table 1. The overall statistical test for inequality of years of education was not signifi-

cant (p>0.05). The mini-mental state examination (MMSE) score was lower for the 95+ age

Lipidomics of ageing human plasma

PLOS ONE | https://doi.org/10.1371/journal.pone.0214141 March 20, 2019 5 / 22

https://doi.org/10.1371/journal.pone.0214141


group compared to younger age groups (p<0.01, Kruskall Wallis test), except for the 65–75

age group. The waist-hip ratio (WHR) was reported for subjects in the HCS and MAS studies

(data unavailable for SCS) and was not significantly different between age groups. The levels of

LDL-C, HDL-C, total cholesterol and TGs were also not significantly different between age

groups (p>0.05, Kruskall Wallis test), nor cohorts (S2 Table).

Comparing subjects by sex (S3 Table), age, BMI and years of education of males and

females in our study were not statistically different (p>0.05, Mann-Whitney U test), though

WHR was significantly higher in males (p<0.001). Females also had higher LDL-C, HDL-C

and total cholesterol levels compared to males (p<0.05).

Effect of lipid-lowering medication on lipids

Subjects on lipid-lowering medication had lower total cholesterol, LDL-C, and triglycerides

(p<0.05, Mann-Whitney U-test). By contrast, these subjects had higher HDL-C levels, and sig-

nificantly higher HDL-C to LDL-C ratio (HLR) (Fig 1A), and had lower levels of Cer(d18:0/X)

(dihydroceramides) and trended lower Cer and CE(18:X) levels (p = 0.07) compared to their

drug naïve counterparts (Fig 1B). There were no other significant differences in the abundance

of other lipid classes by lipid-lowering medication.

Correlations of LDL-C, HDL-C and total cholesterol with lipid classes

Pearson correlations of LDL-C, HDL-C and total cholesterol with lipid classes are shown in heat-

map form (Fig 2A). LDL-C and total plasma cholesterol were significantly and positively corre-

lated with total Cer(d18:1/X) species, as well as total SM(d18:1/X) species (r = 0.45 and 0.40 for

LDL-C with Cer and SM respectively, p<0.001, and r = 0.46 and 0.42 for cholesterol with Cer and

SM respectively, p<0.001). All other correlations were not significant (p>0.05). The only signifi-

cant correlations of HDL-C with lipid class were negative correlations with DG and TG, (r = -0.33

and r = -0.23, respectively, p<0.05). TGs were significantly correlated with total DG levels

(r = 0.68, p<0.001). Most lipid subclasses were positively inter-correlated, especially within a class,

except for PS, which was not associated with DG, TG or most phospholipids (Fig 2B).

Table 1. Patient characteristics and lipid profiles by age decade.

56-<65 yrs 65-<75 yrs 75-<85 yrs 85-<95 yrs 95+ yrs Chi-square

N 21 19 20 20 20 N/A

Age 58.5 (2.6) 68.4 (2.3) 79.1 (2.9) 87.1 (1.9) 96.6 (1.4) 94.8�

BMI 28.9 (5.2) 27.5 (5.3) 28.3 (5.0) 27.9 (5.2) 26.6 (5.8) 2.459

Lipid-lowering medication 2 (9.5%) 5 (26.3%) 6 (30%) 8 (40%) 5 (25%) 2.029

Years of Education 12.3 (1.9) 11.4 (2.3) 11.25 (3.8) 10.6 (4.3) 10.1 (2.8) 9.076

MMSE score 28.7 (1.1) 27.8 (1.2) 29.1 (0.8) 29.3 (0.73) 26.0 (3.5) 25.94�

WHR 0.89 (0.11) 0.88 (0.08) 0.92 (0.06) 0.94 (0.11) N/A 3.951

LDL-C (mmol/L) 3.37 (0.79) 3.06 (1.0) 2.85 (0.9) 3.22 (1.19) 2.94 (1.06) 2.840

HDL-C (mmol/L) 1.38 (0.35) 1.37 (0.38) 1.4 (0.29) 1.38 (0.39) 1.47 (0.38) 0.539

Total Cholesterol (mmol/L) 5.39 (0.7) 5.13 (1.0) 4.77 (1.0) 5.21 (1.32) 4.93 (1.10) 4.384

Triglycerides (mmol/L) 1.33 (0.97) 1.29 (0.82) 1.09 (0.49) 1.34 (0.75) 1.13 (0.42) 1.348

Abbreviations: body mass index (BMI), mini-mental examination (MMSE), waist-hip ratio (WHR), low density lipoprotein cholesterol (LDL-C), high density

lipoprotein cholesterol (HDL-C).

Values represent mean (SD).

� p<0.05

Kruskall Wallis test was used for all variables except the use of Lipid-lowering medications, in which case the Chi-square test for equality of proportions was used.

https://doi.org/10.1371/journal.pone.0214141.t001
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Fig 1. Lipid-lowering medications and plasma lipids. Effect of lipid-lowering medication usage on a) concentrations (mmol) of cholesterol, LDL-C

and HDL-C, triglycerides and HLR (�p<0.05, Mann-Whitney U test) and (b) on normalised lipid abundances for lipid classes.

https://doi.org/10.1371/journal.pone.0214141.g001
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Fig 2. Correlation matrices of traditional lipid measures and lipid classes. (a) Correlation matrix of cholesterol,

LDL-C, HDL-C and triglyceride levels with LC-MS measured lipid classes; numbers show 2-digit rounded correlation

values; dendrograms represent the hierarchical clustering of lipid classes according to their correlation measures. All

correlations above r = 0.30 are considered significant at the p = 0.05 level. (b) Correlation matrix of lipid classes with

each other ordered by hierarchical clustering to group together the correlated lipid classes. Heatmap scale represents

Lipidomics of ageing human plasma
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Principal component analysis of lipid classes

Principal component analysis yield two factors (see Table 2 for the factor pattern matrix). The

correlation between the two factors was 0.40. The first factor (FAC1) is likely linked to LDL-C

and ApoB particles, since the factors that loaded strongly to it included Cer, SM, as well as

LPC and PE, while the second factor (FAC2) is likely linked to TG-rich VLDL due to high

loadings by DG, TG and PC. These two factors explained 51.6% and 13.0% of the variance

respectively.

Age decade comparisons of lipid abundances

Upon comparing abundances by age group, subjects from the oldest age decade (subjects from

the SCS aged 95+) had significantly lower lipids for all lipid classes examined relative to all

other age groups (Fig 3, p<0.05, Kruskall Wallis test and post-hoc pairwise Mann-Whitney U

tests), with the exception of DG lipids and their subclasses. Negative relationships of lipids by

raw age are also shown in S1 Fig, and in S4 Table.

Linear regression

Multiple linear regressions were applied to model lipid abundances using age centred at 75

years of age (age c75) as independent variables and BMI, sex and the interaction of age with

sex as control variables (Table 3). Since the distributions of lipid abundances were found to be

positively skewed, they were first log10 transformed to more closely approximate the normal

correlation strength, with red and blue for positive and negative correlations respectively. All correlations above

r = 0.30 or below -0.30 are considered significant at the p = 0.05 level.

https://doi.org/10.1371/journal.pone.0214141.g002

Table 2. Principal component analysis: Component pattern matrix.

Component h2

Lipid Class 1 2

SM(d18:1/X) .940 -.152 0.793

LPC .871 -.208 0.656

Cer(d18:1/X) .809 .051 0.689

Cer(d18:0/X) .783 .075 0.666

PE(16:0/X) .698 .326 0.776

CE(20:X) .683 .204 0.619

PE(18:0/X) .672 .395 0.82

CE(18:X) .666 .239 0.689

PS .521 -.040 0.256

DG(18:0/X) -.291 .871 0.641

DG(16:0/X) .041 .821 0.703

DG(18:1/X) .151 .760 0.692

PC(18:0/X) .215 .639 0.565

TG .348 .586 0.627

PC(16:0/X) .354 .537 0.566

Factors were extracted by principal component analysis and solution rotated by to simple oblique structure with

Kaiser normalisation. Loadings are displayed for each factor/component. Percentage of variance explained = 64.7%.

h2 = communalities (proportion of each variable’s variance explained by the factors, defined as the sum of squared

factor loadings for each variable).

https://doi.org/10.1371/journal.pone.0214141.t002
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Fig 3. Boxplots of lipid class normalised abundance across age groups. The 95+ group had significantly lower abundance compared to

younger age groups (Kruskall Wallis test and pairwise Mann Whitney U-tests, p<0.05) for all lipid classes with the exception of DG lipids and

subclasses.

https://doi.org/10.1371/journal.pone.0214141.g003
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distribution. All lipid classes were significantly and negatively affected by age from 56–100

years (p<0.05), with the exception of DG(18:0/X) (p<0.10), while DG(18:1/X) did not yield a

significant model (p>0.05).

BMI was significantly associated with increased CE (p<0.05, and p<0.10 for CE(18:X)),

and decreased LPC (p<0.05), though there were no overall no statistically significant relation-

ships with the other lipid classes. None of regression coefficients representing the main effects

of sex were statistically significant (note that, since a sex by age interaction term was included

in the model, these regression coefficients represent the effects of sex at the centred value of

age, namely at age 75). To assess sex differences in the relationship between age and lipid clas-

ses, we included a product term to represent the interaction of age with sex. While sex was not

significant for all classes at age 75, there were significant positive interactions of age with sex

Table 3. Regression models of log-10 transformed lipid abundances as a function of age, BMI, sex and age by sex interaction.

Plasma Lipid Category B Agec75 B Agec75 Fa B BMI B Sex B Interaction

Sex × Agec75

R Squared

Cer(d 18:0/X) -0.013��� -0.008��� -0.002 0.019 0.007�� 0.32���

Cer(d 18:1/X) -0.009��� -0.005�� -0.005 0.038 0.005† 0.25���

CE(18:X) -0.014��� -0.011��� 0.007† -0.003 0.003 0.47���

CE(20:X) -0.015��� -0.01��� 0.009�� -0.005 0.006�� 0.47���

CE -0.014��� -0.011��� 0.008�� -0.001 0.004 0.47���

DG(16:0/X) -0.012��� 0.002 0.003 -0.08 0.014�� 0.09�

DG(18:0/X) -0.007† 0.007� 0.004 -0.027 0.014�� 0.06�

DG(18:1/X) -0.009�� -0.001 0.001 -0.044 0.008† 0.05†

DG -0.01��� 0.001 0.002 -0.046 0.01�� 0.08�

LPC -0.011��� -0.009��� -0.007�� -0.006 0.002 0.39���

PC(16:0/X) -0.005�� -0.001 -0.004 0.002 0.005�� 0.06�

PC(18:0/X) -0.01��� -0.003† 0.002 -0.002 0.007�� 0.16���

PC(34:X) -0.008��� -0.004� -0.001 -0.008 0.004�� 0.21���

PC(38:X) -0.009��� -0.003� 0.001 -0.001 0.006�� 0.30���

PE(16:0/X) -0.011��� -0.005�� -0.002 0.01 0.006�� 0.35���

PE(18:0/X) -0.011��� -0.004� -0.001 0.026 0.006�� 0.36���

PE -0.011��� -0.007��� 0.002 -0.03 0.004† 0.37���

PS -0.02��� -0.01† -0.005 0.011 0.009 0.11���

SM(d 18:1/X) -0.007��� -0.008��� -0.002 0.04 0.001 0.33���

SM -0.007��� -0.007��� -0.001 0.037 -0.00003 0.33���

TG -0.012��� -0.004† 0.003 -0.014 0.007�� 0.21���

Principal Component Analysis Exploratory Factors

FAC1 -0.066��� -0.042��� -0.009 0.053 0.024�� 0.55���

FAC2 -0.042��� 0.007 0.016 -0.098 0.049�� 0.14���

Plasma lipids were log10-transformed to reduce skewness of dependent variables. B represents unstandardized regression coefficients. Agec75 is age centred at 75 years

(i.e. actual age– 75 years). R squared is the adjusted R squared value. Interaction refers to the product term Agec75�Sex. Factor scores (FAC1 and FAC2) were derived

from principal component analysis of lipid class variables. Sex was coded male = 0; female = 1. Hence positive regression coefficients for the interaction terms indicate

stronger negative effects of age for males.
a Regression coefficients were also calculated separately for females by recoding female = 0, male = 1. Thus B Agec75 F represents the effect of age on lipids in females

only, compared against B Agec75 which represents the effect of age on lipids in males only.
† p<0.10

�p < .05

��p < .01

���p < .001.

https://doi.org/10.1371/journal.pone.0214141.t003
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for Cer, DG, TG, PC and PE subclasses, as well as CE(20:X), suggesting the negative effect of

age was stronger in males (p<0.05). In addition, we determined sex-specific effects of age on

the lipidome by recoding the sex term (swapping males and females) to isolate regression coef-

ficients of age for females only (Table 3). This confirmed stronger negative effects of age on lip-

ids in males compared to females for most lipid classes. In general, the combined effect of all

variables in the equation explained from 6% up to 47% of the variance in each model.

We also examined as dependent variables the two sets of component scores the two factors

derived from principal component analyses. The overall models were significant, with compo-

nent scores FAC1 and FAC2 both significantly and negatively associated with age, and with

positive and statistically significant age-sex interaction, with the predictor variables in combi-

nation explaining 56% and 14% of the total variance of FAC1 and FAC2, respectively.

Associations of sex with lipid classes

Our regression model (Table 3) did not find independent sex differences between lipid classes

(all p>0.05). However, we did find individual species of SM were higher in females than in

males (Fig 4, p<0.05, Mann-Whitney U test). In particular, SM(d18:1/24:2) and SM(d18:1/

23:1) were higher in females than males, and SM(d18:1/25:3) trended higher in females

(p = 0.07). Among subjects aged over 75 years, females also had higher levels of DHA–contain-

ing phospholipids including PE(18:0/22:6) and PC(18:0/22:6) in positive mode, and PE(18:1/

22:6), and PE(16:0/22:6) in negative mode, with PI(16:0/22:6) trending higher but not reaching

significance (Fig 4, p = 0.06).

Additionally, among females, PC(18:0/22:6), PE(16:0/22:6), PE(18:0/22:6) and PE(18:1/

22:6) correlated with enzymatically assayed TG levels (r = 0.48, 0.48, 0.59 and 0.43 respectively,

p<0.01), while PE(16:0/22:6), PE(18:0/22:6) and PE(18:1/22:6) were also negatively correlated

with LDL-C levels (r = -0.37, -0.35, and -0.46 respectively, p<0.02) independent of age and

BMI.

Fig 4. Boxplots of lipid normalised abundances for specific sphingomyelins and phospholipids. Note phospholipids presented were taken from subjects

aged over 75 years by sex; p-values derived based on Mann-Whitney U test.

https://doi.org/10.1371/journal.pone.0214141.g004

Lipidomics of ageing human plasma

PLOS ONE | https://doi.org/10.1371/journal.pone.0214141 March 20, 2019 12 / 22

https://doi.org/10.1371/journal.pone.0214141.g004
https://doi.org/10.1371/journal.pone.0214141


Discussion

Our study examined how plasma lipids are differentially associated with ageing, sex and BMI

during the second half of the human lifespan in APOE ε3 homozygous individuals. Our untar-

geted LC-MS experiment, using a cross-sectional approach, detected a general decline in

plasma lipid metabolites among older participants, especially in the oldest subjects aged

between 95 to 100 years. Furthermore, we found some sex specific differences in lipid profiles,

particularly in levels of specific SMs and DHA-containing phospholipids. Surprisingly, few

associations of lipid level and BMI were identified.

Untargeted metabolomics approaches have commonly been used to identify relative changes

in the plasma lipidome in health and disease [2, 8]. Previous studies have identified associations

of plasma lipid profiles with age, in age brackets up to about 65 years of age. For example, one

study focusing on individuals aged between 20–65 years [12], found that the concentrations of

100 metabolites are differentially altered with age, with fewer lipids noted to differ by sex and

race. Selected lipid metabolites, including fatty acids and cholesterol were increased in concen-

tration in subjects aged between 51–65 years of age compared to younger subjects. The study

also reported higher levels of lipid metabolites in females compared to males, independent of

age, indicating potential sex related differences. Another study described changes in concentra-

tions of plasma lipids between two age groups, a young (25–35 years) and an old (55–65) age

group [8]. In males and females, eight and 89 lipids, respectively, showed significant associa-

tions with age. Thus, the study indicates that a majority of lipids remain stable with age, espe-

cially in males, while some lipids may be increased from young through to middle age.

Age–specific differences in lipid profiles

There is a major point of difference between the present study and previous work, in that we

focused on individuals from 56 up to 100 years of age (mean = 77.8), while most published

work report a maximum age of 65. Herein, we have investigated the plasma lipidome during

the second half of the human lifespan, including a cohort of subjects aged 95 and above

enrolled in the SCS [17]. These extreme aged subjects are important as they represent a model

of successful ageing [25], typically surviving 20 years longer than the average life expectancy.

The mechanism(s) which confer this extreme longevity are unclear, and possibilities include

(i) lower incidences of serious diseases and risk of morbidity compared to younger cohorts

[25–27], (ii) a surplus of protective mechanisms which either circumvent the impact of stress-

ors or else confer resilience in spite of disease or the impact of stressors or (iii) “compression

of morbidity” [26]. Investigating the lipidome of aged and super-aged individuals may identify

indices related to healthy ageing, where certain blood-borne factors may be implicated in lon-

gevity [28], especially as lipids have previously been linked to age-related disease and brain

ageing [2, 6, 29]. Furthermore, there is evidence that centenarians are likely to have unique

and heritable genetic makeup that predisposes them to a longer life [30, 31]. These genetic pro-

tective factors may manifest in altered lipid composition or lipoprotein particle size [32],

although modifiable lifestyle factors, such as diet, also play a role in longevity and regulation of

lipid homeostasis [30].

The results of our study suggest that there is a universal decline in the plasma concentration

of all major lipid classes during the second half of the human lifespan in healthy individuals. In

particular, the concentration of plasma lipids was lowest in the 95+ age group, irrespective of

lipid class. Interestingly, this particular group of extreme aged individuals were largely taken

from the SCS and markedly reduced lipid concentrations compared to all other (younger) age

groups, which we further confirmed using linear regression models by age. In contrast with

previous studies which compare young adults to middle aged adults, where lipids are generally
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reported to be increased with age [8, 12], in our cohort of much older individuals, the trend is

to a plateau or slight lowering of plasma lipid levels in middle to older age, and a marked drop

in the centenarian age bracket. Our data suggest that the lipidome in ‘oldest-old’ people could

differ substantially to that observed in middle-aged adults, possibly with a reversal to patterns

seen among younger subjects [33], though data in younger subjects is required for direct

comparison.

Various studies have indicated a lipidomic signature predictive of longevity [33, 34]. For

example, longevity has been specifically associated with reduced concentrations of plasma long

chain free fatty acids in mammals, especially polyunsaturated fatty acids. A distinct lipidomic

signature for ageing has also been identified in humans, where a lower double bond index, or

reduced lipid peroxidisability of fatty acids was found to correlate with increasing longevity

[35]. These differences were only noted in subjects aged over 95 years, and not in elderly sub-

jects with a mean age of 75 years [33], thus necessitating the study of the human lipidome into

extreme age to fully uncover these age specific effects. Additionally, it is important to examine

functional consequences of lipid and lipoprotein modulating gene variants, which have previ-

ously been identified in genomic studies [36].

Other studies comparing centenarians against elderly subjects (mean age = 70 yrs) from

Northern Italy [7, 34] found SM to be elevated in centenarians, while some phospholipids

were also different between groups. In contrast, we found an overall reduction of SM species

with extreme ageing. These differences could be related to the fact that the centenarians sam-

pled in the Montoliu study [7] focused largely on females, in which we found SM and LDL-C

levels to be elevated compared to males. Secondly, the data is derived from an ageing popula-

tion in Northern Italy, where dietary, lifestyle and genetic influences could be substantially dif-

ferent from that of the typical older Australian recruited in the SCS [17]. Also, we stratified for

APOE ε3 homozygous individuals while it is unlikely this study selected for APOE genotype.

However, the Montoliu study did find that most other phosphocholines were significantly

decreased in the elderly [7], which mirrors our overall findings.

We further showed that plasma lipid levels may be predicted by a linear combination of

age, BMI, sex and the interaction of age and sex, and this is lipid class dependent. In particular,

all lipids apart from DG(18:0/X) covaried with age. DG lipids had the lowest variance

explained and this may be a result of an inverted U-shaped trajectory across age (Fig 2).

Although the sex term was not significant for any lipid class, significant interactions of age

with sex for Cer, phospholipids, DG and TG indicate that some lipid classes could decline with

age differently between the sexes, with a steeper decline among males, also confirmed by the

more negative regression coefficients for age in males compared to females. We were also able

to factor-analyse lipid classes using principal component analysis to identify two factors

explaining most of the variance, which are likely related to LDL or ApoB, and TG-rich VLDL.

As with individual lipid classes, both factors when entered into our linear regression model

were significantly and negatively associated with age, as well as age-sex interaction, such that

females had higher levels of lipids compared to males. The results are consistent with previous

findings from a study in individuals aged from 50–55 years where females had increased levels

of ApoB to overtake that of males. Previously, our laboratory also showed that apolipoprotein

expression is altered in older individuals, with most plasma apolipoproteins being reduced in

older subjects, but are also higher among females compared to males over the age of 55 [37].

Therefore, it is possible that the decline in plasma lipids could be related to marked changes in

circulating lipid transporters and carrier proteins in older age. Other mechanisms such as

altered hepatic lipid metabolism, expression of LDL receptors, and intestinal uptake of lipids is

known to affect plasma lipid profiles in middle aged adults under the age of 60 [38–40], though

this may be different in older aged adults.
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Impact of lipid-lowering medication on lipid profiles

One potential confounder is that some of the subjects taken from the SCS were also on lipid-

lowering medication. Our analysis revealed that subjects on lipid-lowering medication had

reduced LDL-C and total cholesterol, and increased HDL-C. Nevertheless, even after exclud-

ing these subjects from analysis, the negative association of lipid levels with age was preserved.

In fact, there were more subjects on lipid-lowering medications in the 85-<95 group com-

pared to the 95+ group (n = 8 vs n = 5 respectively). We note that many ageing studies fail to

report the use of lipid-lowering medication in their subjects and the potential effect this might

have on lipid profiles. In any case, our data suggest that while lipid-lowering medication can

alter lipid profiles, namely LDL-C, HDL-C and total cholesterol, an age-related reduction in

plasma lipids may be independent of these effects, though only a small number of subjects

were on lipid-lowering medication in our study.

Sex–specific differences in lipid profiles

Previous studies in younger subjects have shown substantial sex differences in the plasma lipi-

dome [8, 13]. Our results confirm that some sex differences hold up even in this older age

range. Of note, we found significant sex differences in the levels of particular lipids in the SM,

PC and PE families. In particular, SM(d18:1/23:1) and SM(d18:1/24:2) were elevated in

females, which has previously been reported [8, 41] and could potentially be accounted for by

differences in LDL-C cholesterol levels. We found that elderly females have higher levels of

LDL-C, HDL-C and total cholesterol compared to elderly males and this could be linked to

increased levels of apoA-I and apoB in females [37, 42]. However, there is some variance in the

literature on this topic, since another study found that males had higher LDL-C levels com-

pared to females in subjects aged under 55 years, although among females, LDL-C and apoB

levels increased post-menopause [42, 43]. Additionally, it has been suggested that physical

activity could confer greater benefits towards increasing HDL-C levels among middle aged

and elderly females [44] compared to similarly aged males. If so, this necessitates differential

approaches to treatment and prevention of dyslipidaemia and atherosclerosis between sexes,

such as lipidomic screening of postmenopausal women [43].

DHA-containing fatty acids in plasma phospholipids, such as PE(18:0/22:6), PE(16:0/22:6)

and PE(18:1/22:6) and PC(18:0/22:6), were also reduced in males aged over 75 years, relative

to females, an observation also reported in previous studies [8, 45]. This is potentially attribut-

able to differences in liver expression of enzymes involved in DHA biosynthesis, particularly

desaturases and elongases [46]. Whether this confers a difference in longevity between sexes is

still unclear, though we were able to show a negative correlation between some of these phos-

pholipids with triglyceride and LDL-C levels among females, which could be indicative of an

anti-atherogenic profile in extreme aged females. Additionally, DHA is considered vital in

maintaining brain health and cognition [47], and higher levels of phospholipid DHA has been

shown to be associated with decreased mortality due to late-life disease [48].

In young females, levels of sphingolipids and cholesterol are increased from young age to

middle age, and this effect is elevated when contraceptives are used [49], suggesting a strong

interplay between sex hormones and lipid levels. Given that our cohort features solely post-

menopausal women, lipid differences by sex appear to persist in older age. Previous studies

have reported that postmenopausal women typically have a more pro-atherogenic lipid profile

compared to pre-menopausal women [49, 50]. There were no other sex differences in lipid lev-

els apart from LDL-C, HDL-C, total cholesterol, various species of SM and DHA-fatty acid

containing PL levels, although we did note that the decline of lipid levels with increasing age

may be different between sexes. In particular, the significant interaction of age with sex and
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stronger negative regression coefficients of age in males in our regression models indicate that

males tend to show a steeper rate of decline in lipids (especially phospholipids) with age com-

pared to females. While the mechanism is unclear, it could be related to inherent differences in

metabolism between sexes, where males tend to oxidise lipids faster than females [51], as well

as the effects of menopause and hormone replacement therapy [52]. Genetic and epigenetic

factors could also be involved, as some lipids are associated with familial longevity among

female offspring of nonagerians [53]. Overall, our results indicate plasma lipidomic changes

with age is modifiable by sex in healthy individuals, and it is likely that sex also impacts on the

lipidome in age-related diseases such as Alzheimer’s disease, modifying risk and severity [54–

57].

BMI association with lipids

One surprising finding was the minimal association between BMI with most lipid classes stud-

ied. While high BMI is typically associated with obesity and related conditions such as diabetes

and cardiovascular disease, the exact relationship between BMI and lipid levels in ‘healthy’

individuals remains unclear. Some studies have shown a lack of association between LDL-C

and higher BMI. For example, Manjareeka, Nanda [58] found that BMI had a very weak asso-

ciation with LDL-C, HDL-C and total cholesterol [58], with no discernible differences between

normal (BMI = 20–25 kg/m2) and overweight or obese subjects (BMI>25 kg/m2). The authors

suggested that BMI may not be an accurate indicator of fat mass since measured weight does

not discriminate between lean and fat mass. BMI also does not take into account intrinsic dif-

ferences in fat mass between sexes, and at different ages [59, 60]. In particular, BMI tends to

overestimate fat mass in males and underestimate fat mass among the elderly, which could

complicate our understanding of our results in relation to the elderly. Another study compar-

ing monozygotic twins with notable BMI differences of at least 4 kg/m2 found that obesity is

associated with increases in lysophosphatidylcholines, while some other lipid classes, such as

SM, remained largely unchanged among twin pairs [15]. A similar BMI difference is defined

in our groups (18–25 vs 28+) but we found surprisingly few associations of BMI with lipid

class. In particular, we did not find any differences between BMI groups (<25 vs 28+) and

regression analysis only showed a significant association of BMI with increased CE levels and

reduced LPC levels after controlling for age and sex. The findings regarding LPC levels contra-

dicts the above study, but there is variance in the literature regarding the LPC and obesity,

where other studies suggest lower LPC levels is correlated with obesity, insulin resistance and

BMI [61, 62]. The apparent contradiction may be due to the vast age differences in the various

studies, with the study of twins undertaken in young subjects under the age of 30 years, while

other studies of obesity and type II diabetes recruited middle-aged subjects up to the age of 60

years, which is an age range closer to that of our study. Our study is one of the first lipidomics

studies of BMI in older aged individuals, and we found minimal associations of lipids with

BMI, apart from an increase in CE and a reduction in LPC.

Limitations

Although our study provides a good overview of lipidomic changes that are associated with

age, sex and BMI in older individuals, there are also some limitations: (i) we focused on sub-

jects aged over 55 years, which prevents direct comparisons with younger and middle aged

adults; (ii) a largely Caucasian population living in South-eastern Australia was used, so cau-

tion must be taken when interpreting results against that of studies in non-Caucasian subjects,

where racial differences may be evident [44]; (iii) our sample size of 100 subjects, split by sex,

is modest from a statistical standpoint (though similar or even larger than some studies
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reported in the literature). Ideally, a larger range of subjects in the order of several hundred

subjects should be used to increase power; and (iv) most studies, including the present study,

use cross-sectional designs and may therefore be influenced by cohort effects. We suggest that

further studies should be conducted in a longitudinal setting to fully understand intra-individ-

ual variation in lipids with age, although longitudinal studies over several decades are generally

impractical unless historical samples are available.

The question then remains as to the potential mechanism behind the global decline in lipids

noted in subjects from the SCS cohort. Our study is limited in that we did not include subjects

over the age of 95 from any other cohorts, and thus it is difficult to ascertain whether the sud-

den decrease in lipids noted in the 95+ group could potentially be a specific cohort effect rather

than an age effect. Even so, all participants were sampled from Eastern Australia with similar

socio-economic backgrounds and we attempted to control for other patient variables as much

as possible so that they were similar between cohorts (S2 Table). Furthermore, the blood col-

lection process performed is routine for all studies and analysis of samples was performed at

wave 1. We previously used the same cohorts with a larger number of subjects to quantify apo-

lipoproteins among participants aged from 55–100 and found changes in most apolipoproteins

with age consistent with the lipidomics data gathered here [37]. Our results indicate that the

SCS is a unique cohort with a significant reduction in lipid levels likely a result of advanced

age [26], but further work is required to verify this.

Another limitation is that we largely used total lipids within a class/subclass in order to sim-

plify analysis, with arbitrary grouping according to total number of carbons or double bonds.

Nevertheless, we uncovered a great deal of redundancy in that many individual lipid species

and subclasses of a single class behaved similarly with respect to age and sex, and were also

largely inter-correlated. This suggests that summing lipids as a group could be a simple and

efficient way to analyse global lipid changes, although it is important to note particular species

of lipids within a class may have distinct functions, and could be differentially implicated for

some conditions. Indeed, although we found total SM(d18:1/X) was not significantly different

between males and females across age, some individual SM(d18:1/X) species were different

based on sex. Our study covered a large range of different lipid classes found in plasma, though

further coverage of the lipidome is possible through other analytical techniques, such as

nuclear magnetic resonance spectroscopy (NMR) [7, 34], and GC-MS [12, 33, 35]. Finally, we

emphasise that as this is a basic research study (and not an epidemiological study) as the sub-

ject group was comprised of healthy individuals and we removed the APOE allele confounder

by selecting individuals with the APOE E3/E3 genotype. We acknowledge that this approach

could have a bearing on the abundance of lipids uncovered, especially as the APOE genotype is

a common risk factor for age related diseases such as Alzheimer’s disease [10] and late life cog-

nitive decline [21, 37, 56]. Even so, we expect our results to be largely reflective of ageing in the

general eastern Australian population, with>70% being APOE ε3 homozygous, and further-

more, the prevalence of APOE E3/E3 genotype is typically enhanced in older subjects relative

to APOE ε4 carriers [63]. In addition, focusing on a single and common APOE genotype

increases the power of our study where we would otherwise have to statistically control for this

variable. In future work, we intend to survey the impact of APOE genotypes on lipid profiles.

Conclusions

Our untargeted lipidomics approach using plasma from 100 healthy subjects aged from 56 to

100 indicates a universal reduction in lipid profiles in older subjects independent of sex and

BMI, which is especially apparent in the oldest subjects over 95 years of age. Our study also

suggests that the lipid profile with age is substantially different in the elderly population
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compared to previous reports in young and middle aged adults. There were fewer sex related

differences in lipids, which included higher levels of specific SMs and DHA-containing phos-

pholipids, as well as LDL-C, HDL-C and total cholesterol among females. Also, the reduction

of most lipids in older age was strongest among males. BMI was only associated with increased

CE and reduced LPC. Results of our small study highlight the importance of understanding

and accounting for natural variation in the plasma lipidome in experimental designs. Further

studies in larger independent cohorts are recommended to clarify and validate these findings,

which could highlight important processes involved in healthy ageing and longevity.

Supporting information

S1 Appendix. Supporting methods.

(DOCX)

S1 Table. Lipid classes and number of lipids analysed in positive and negative ion mode.

(DOCX)

S2 Table. Patient characteristics and lipid profiles by age cohort.

(DOCX)

S3 Table. Patient characteristics and lipid profiles by sex.

(DOCX)

S4 Table. Correlations of lipid class normalised abundances with age. Correlations were

taken for all subjects, then after correcting for sex, BMI and lipid-lowering medication usage,

and after excluding those on lipid-lowering medication.

(DOCX)

S1 Fig. Scatterplot of age (years) with normalised lipid abundances for each lipid category.

(DOCX)

Acknowledgments

The authors would like to acknowledge the contributions of Dr. Kristan Kang and Mahboobeh

Hosseini, who provided data collection and biobanking for plasma samples, as well as Ms.

Angela Russell and Dr. Sophia Dean, who provided administrative support. The authors also

thank the Mark Wainwright Analytical Centre in conjunction with the Bioanalytical Mass

Spectrometry Facility for providing use of the QExactive Plus mass spectrometer, analytical

grade reagents and data processing software. The authors would also like to thank CHeBA and

SEALs Pathology (Prince of Wales Hospital) for handling and preparing MAS and SCS sam-

ples, as well as the MAS, HCS and SCS research teams and participants for making this project

possible.

Author Contributions

Conceptualization: Nady Braidy, Perminder Sachdev, Anne Poljak.

Data curation: Matthew Wai Kin Wong, Russell Pickford, Fatemeh Vafaee, John Crawford,

Julia Muenchhoff, Anne Poljak.

Formal analysis: Matthew Wai Kin Wong, Fatemeh Vafaee, John Crawford, Julia Muenchh-

off, Perminder Sachdev, Anne Poljak.

Funding acquisition: Nady Braidy, Peter Schofield, John Attia, Henry Brodaty, Perminder

Sachdev, Anne Poljak.

Lipidomics of ageing human plasma

PLOS ONE | https://doi.org/10.1371/journal.pone.0214141 March 20, 2019 18 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214141.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214141.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214141.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214141.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214141.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214141.s006
https://doi.org/10.1371/journal.pone.0214141


Investigation: Matthew Wai Kin Wong, Nady Braidy, John Attia, Perminder Sachdev, Anne

Poljak.

Methodology: Matthew Wai Kin Wong, Nady Braidy, John Crawford, John Attia, Henry Bro-

daty, Perminder Sachdev, Anne Poljak.

Project administration: Nady Braidy, Peter Schofield, John Attia, Henry Brodaty, Perminder

Sachdev, Anne Poljak.

Resources: Nady Braidy, Russell Pickford, John Crawford, Henry Brodaty, Perminder Sach-

dev, Anne Poljak.

Software: Nady Braidy, Russell Pickford, John Crawford, Anne Poljak.

Supervision: Nady Braidy, Russell Pickford, Fatemeh Vafaee, John Crawford, Perminder

Sachdev, Anne Poljak.

Validation: Matthew Wai Kin Wong, Nady Braidy, Russell Pickford.

Visualization: Nady Braidy.

Writing – original draft: Matthew Wai Kin Wong, Nady Braidy, Fatemeh Vafaee, John Craw-

ford, Peter Schofield, John Attia, Henry Brodaty, Perminder Sachdev, Anne Poljak.

Writing – review & editing: Matthew Wai Kin Wong, Nady Braidy, John Crawford, Permin-

der Sachdev, Anne Poljak.

References
1. Brugger B., Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electro-

spray ionization mass spectrometry. Annu Rev Biochem, 2014. 83: p. 79–98. https://doi.org/10.1146/

annurev-biochem-060713-035324 PMID: 24606142

2. Meikle P.J., et al., Lipidomics: Potential role in risk prediction and therapeutic monitoring for diabetes

and cardiovascular disease. Pharmacology & Therapeutics, 2014. 143(1): p. 12–23.

3. Zuo H., et al., Plasma Biomarkers of Inflammation, the Kynurenine Pathway, and Risks of All-Cause,

Cancer, and Cardiovascular Disease Mortality: The Hordaland Health Study. Am J Epidemiol, 2016.

183(4): p. 249–58. https://doi.org/10.1093/aje/kwv242 PMID: 26823439

4. Gonzalez-Dominguez R., Garcia-Barrera T., and Gomez-Ariza J.L., Combination of metabolomic and

phospholipid-profiling approaches for the study of Alzheimer’s disease. J Proteomics, 2014. 104: p.

37–47. https://doi.org/10.1016/j.jprot.2014.01.014 PMID: 24473279

5. Wong M.W., et al., The application of lipidomics to biomarker research and pathomechanisms in Alzhei-

mer’s disease. Curr Opin Psychiatry, 2017. 30(2): p. 136–144. https://doi.org/10.1097/YCO.

0000000000000303 PMID: 28002106

6. Wong M.W., et al., Dysregulation of lipids in Alzheimer’s disease and their role as potential biomarkers.

Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 2017. 13(7): p. 810–827.

7. Montoliu I., et al., Serum profiling of healthy aging identifies phospho- and sphingolipid species as mark-

ers of human longevity. Aging (Albany NY), 2014. 6(1): p. 9–25. https://doi.org/10.18632/aging.100630

PMID: 24457528

8. Ishikawa M., et al., Plasma and serum lipidomics of healthy white adults shows characteristic profiles by

subjects’ gender and age. PLoS One, 2014. 9(3): p. e91806. https://doi.org/10.1371/journal.pone.

0091806 PMID: 24632803

9. Alshehry Z.H., et al., An Efficient Single Phase Method for the Extraction of Plasma Lipids. Metabolites,

2015. 5(2): p. 389–403. https://doi.org/10.3390/metabo5020389 PMID: 26090945

10. Bandaru V.V., et al., ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer’s but not normal

brain. Neurobiol Aging, 2009. 30(4): p. 591–9. https://doi.org/10.1016/j.neurobiolaging.2007.07.024

PMID: 17888544

11. Ferreira C.N., et al., Comparative study of apolipoprotein-E polymorphism and plasma lipid levels in

dyslipidemic and asymptomatic subjects, and their implication in cardio/cerebro-vascular disorders.

Neurochem Int, 2010. 56(1): p. 177–82. https://doi.org/10.1016/j.neuint.2009.09.016 PMID: 19819279

Lipidomics of ageing human plasma

PLOS ONE | https://doi.org/10.1371/journal.pone.0214141 March 20, 2019 19 / 22

https://doi.org/10.1146/annurev-biochem-060713-035324
https://doi.org/10.1146/annurev-biochem-060713-035324
http://www.ncbi.nlm.nih.gov/pubmed/24606142
https://doi.org/10.1093/aje/kwv242
http://www.ncbi.nlm.nih.gov/pubmed/26823439
https://doi.org/10.1016/j.jprot.2014.01.014
http://www.ncbi.nlm.nih.gov/pubmed/24473279
https://doi.org/10.1097/YCO.0000000000000303
https://doi.org/10.1097/YCO.0000000000000303
http://www.ncbi.nlm.nih.gov/pubmed/28002106
https://doi.org/10.18632/aging.100630
http://www.ncbi.nlm.nih.gov/pubmed/24457528
https://doi.org/10.1371/journal.pone.0091806
https://doi.org/10.1371/journal.pone.0091806
http://www.ncbi.nlm.nih.gov/pubmed/24632803
https://doi.org/10.3390/metabo5020389
http://www.ncbi.nlm.nih.gov/pubmed/26090945
https://doi.org/10.1016/j.neurobiolaging.2007.07.024
http://www.ncbi.nlm.nih.gov/pubmed/17888544
https://doi.org/10.1016/j.neuint.2009.09.016
http://www.ncbi.nlm.nih.gov/pubmed/19819279
https://doi.org/10.1371/journal.pone.0214141


12. Lawton K.A., et al., Analysis of the adult human plasma metabolome. Pharmacogenomics, 2008. 9(4):

p. 383–97. https://doi.org/10.2217/14622416.9.4.383 PMID: 18384253

13. Sales S., et al., Gender, Contraceptives and Individual Metabolic Predisposition Shape a Healthy

Plasma Lipidome. 2016. 6: p. 27710. https://doi.org/10.1038/srep27710 PMID: 27295977

14. Rauschert S., et al., Lipidomics Reveals Associations of Phospholipids With Obesity and Insulin Resis-

tance in Young Adults. J Clin Endocrinol Metab, 2016. 101(3): p. 871–9. https://doi.org/10.1210/jc.

2015-3525 PMID: 26709969
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